Design for the Environment: Where's the Green and Gold?

Patrick Eagan Ph.D., P.E.

Associate Professor

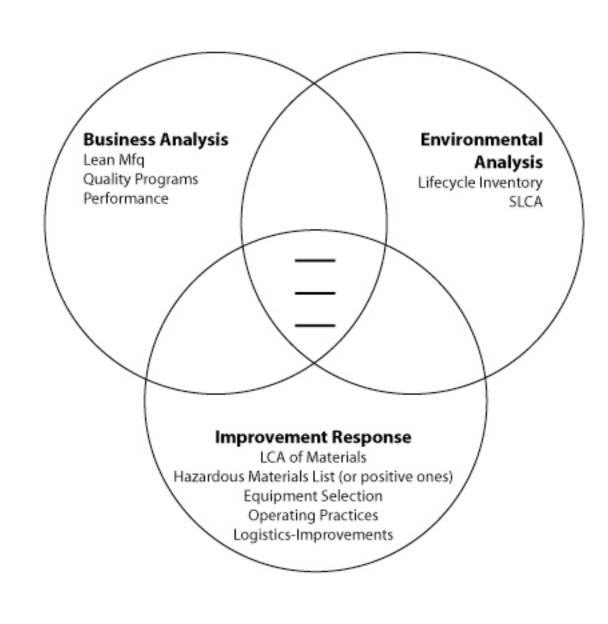
Department of Engineering Professional Development

Agenda

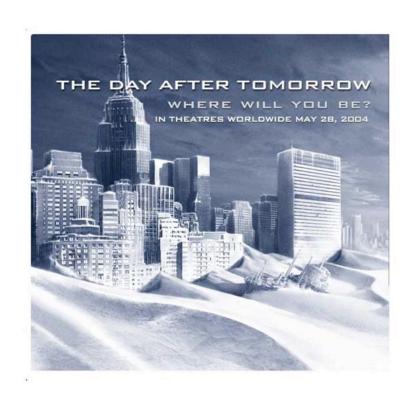
- Introduction to the value of DfE
- Review DfE Tools
- Examples

Importance of Scale "Flying at 30,000 feet"

And at 4 feet



Perspective


- Most people/professionals are interested in improving their welfare in an environmentally conscious way
- Most people/professionals don't know how to do that
- Environmental design is a leveraged way to move towards environmental performance

Perspective

- There are three dimensions to improving environmental performance.
 - Business Decisions
 - Environmental analysis
 - Environmental improvement
- This talk is based on insight and generalization from ten years of design tool development and applicationinductive talk not deductive

What is the state of the Environment?

Connect the Dots

Relating Current Problems to Industrial Responses to Yesterday's Need

Yesterday's Need	Yesterdays Solution	Today's problem
Nontoxic, non- flammable Refrigerants	Chlorofluoro- carbons	Ozone Hole
Automobile engine knock	Tetraethyl lead	lead in air and soil
Locusts, malaria	DDT	adverse effects on birds and mammals
Fertilizer and aid to food production	Nitrogen and Phosphorus fertilizer	Lake and estuary eutrophication

Current Status

- Accumulating scientific evidence of global change and environmental effects
- Persistent bio-accumulators and other environmental problems--Mercury
- Political debate often pits reserved plausibility against unrestrained hyperbole.
- Anti science opposition argue that science is flawed and driven by ideology

Eco Products 2001

Current Status

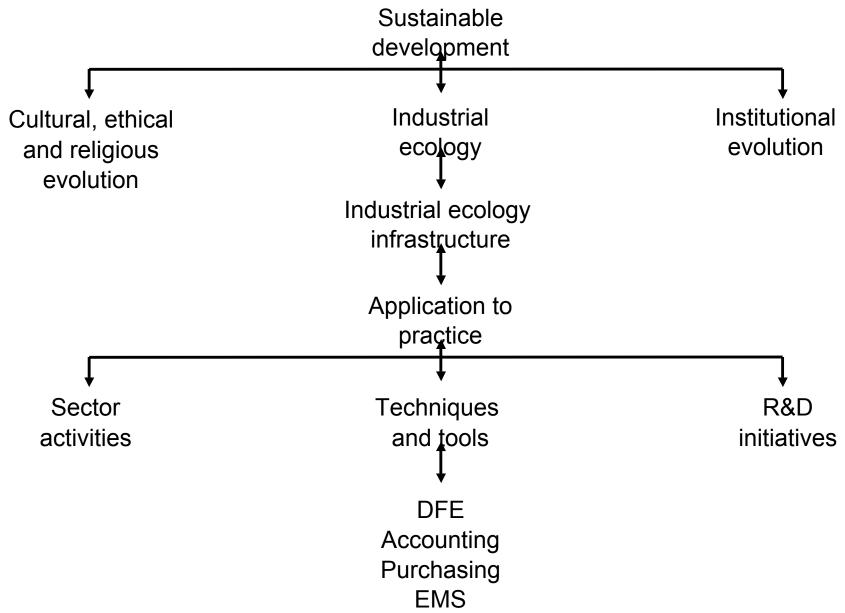
Table 9: Status of Materials Used in Electronic Applications in Key Global Markets

	Americas	Europe	Asia
Pb	2007	2006	2006
Cd	2007	2006	2006
Hg	2007	2006	2006
Cr (VI)	2007	2006	2006
PBBs	2007	2006	2006
Penta BDEs	2007	2006	2006
Octa BDEs	2007	2006	2006
Deca BDEs	2007	2006	2006
ТВВРА			

Color Code:

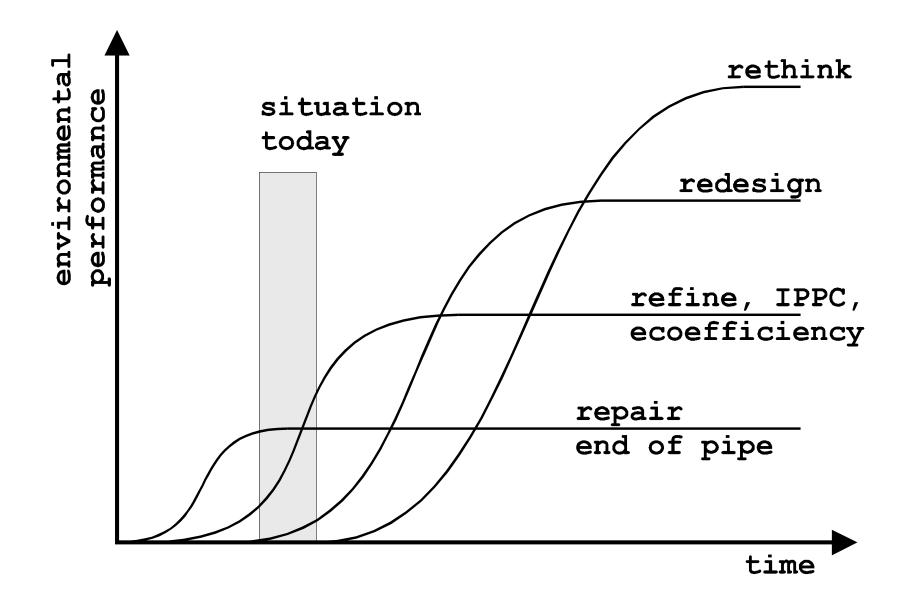
Green = no restrictions on the horizon Yellow = voluntary restriction or requirement not likely to be in effect within 5 years (but probably will later) Red = is or likely to be restricted within 5 years (2009)

Environmental Impact Equation


- Environmental Impact = Population x wealth/unit population x environmental impact/unit wealth
 - term 1: growing
 - term 2: growing rapidly
 - term 3: technology term to compensate for terms 1 and 2

A brief introduction to Industrial Ecology

Definition

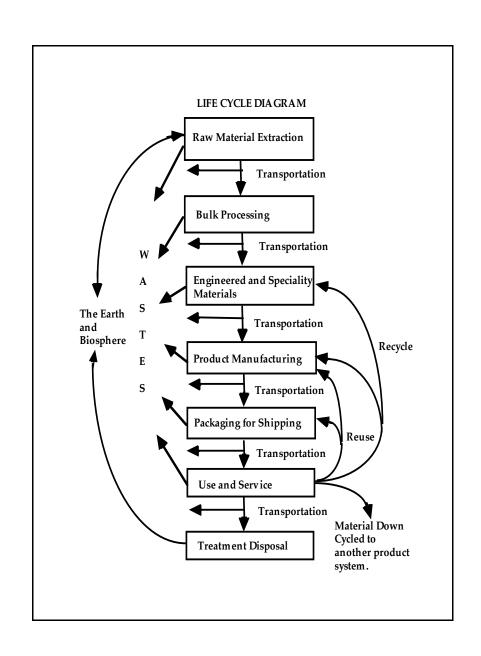

 "Industrial ecology is the means by which humanity can deliberately and rationally approach and maintain a desirable carrying capacity, given continued economic, cultural, and technological evolution. The concept requires that an industrial system be viewed not in isolation from its surrounding systems, but in concert with them." (Graedel and Allenby, 1994)

Industrial Ecology Intellectual Framework

Some typical activities include:

- Designing industrial ecosystems
- Product life extension
- Design for the environment
- Industrial metabolism
 - Energy
 - Material flow

What does this mean from a product design standpoint?


- You will design product life cycles not products.
- You will select materials using different criteria
 - Availability
 - Renewability
- You will be concerned about the fate of the product after its useful life.

You will be interested in:

- DF(x) Durability, Remanufacturing, etc
- Eco-efficiency
- Energy consumption
- Closed loop manufacturing
- Product only plants

Now let's look at Some Specifics

Soap Example

Checklist Joining Techniques

		Need for Action						
Fields of Action (Joinings)	Result Please mark correspondingly with a cross	(1)	1	(1)				
31 SI	• visible	8		\$2 V				
Location	covered		\otimes	(2)				
	hidden			\otimes				
	e can be disconnected nondestructively	\otimes						
Disconnectability	e can be disconnected destructively		\otimes					
action to the second	e can only be disconnected by the destruction of parts		w.	\otimes				
. 4	e accessible in axial dismantling direction	\otimes		(a)				
Accessibility	axial accessible		\otimes					
	e radial or difficult accessibility			\otimes				
	one/few joining elements	\otimes		8				
Number of Joinings	 low (depending on function) 		\otimes					
	• high			\otimes				
	standardized joining elements	\otimes						
Variety of Joinings/Tools	 standardized within the kinds of joinings 		\otimes					
1,70	o not or almost not standardized			\otimes				
	e disconnection wihout tool	\otimes						
Need for Tools	• universal tools		\otimes	_				
	• special tools			\otimes				
Mechanization	can be automated	\otimes						
Automatization of the Dismantling/	• can be mechanized		\otimes					
Disassembling	manual work necessary			\otimes				
Conclusion	Conclusion: Need for need for need for							

Figure 26: Checklist for the design of joining techniques regarding recycling / upcycling.

18.1.2 Chlorine (Cl₂)

The APME reports (APME 1994a) are the basis for the present data. As with plastics, they were modified and supplemented using the procedure described in Chapter 11.1.

Final energy *** source:	Energy supply	Final pr	ocess		1		rit.	Total
	. [MJ]	Amount	特殊的	The state of the s	Amount	T. PROPERTY.	李美[MJ]	A MILES
Electricity	11'290	1'389	kWh	5'000	6	kWh	-20	16'310
Hard coal	140	32	kg	970		kg		1'110
Crude oil products	120	15	kg ·	650	. 7	kg	290	1'060
Natural gas	130	70	m3	2'810	. 0	· m3	10	2'950
Others			, S	40				40
AND DESIGNATION OF THE AMERICAN PROPERTY OF THE PROPERTY OF THE PARTY	THE RESERVE OF THE PARTY OF THE	SECTION SECTIONS	MANAGEMENT AND	No. of the Party o	CHARLES WAS ASSESSED.	The second	PROPERTY OF THE PARTY OF THE PA	AND DESCRIPTION ADDRESS.

Table 18.2: Energy consumption for the production of 1000 kg chlorine

Life cycle inventory: 1000 kg Chlorine Resources, commercial fuels Main product Raw brown coal kg 200. Chlorine (pure) Crude gas (natural gas) m3 100. Raw hard coal 260. Co-products of the same of the Crude oil from drilling well 78. are considered via allocations Uranium from ore 14. Waste treatment Potential energy water 720. Wastes in WIP 0.3 Resources, feedstock Wastes in reactor landfill 27. Iron ore 0.65 Refuse at degradation site Limestone kg 18:6 Rock salt. 1'210,

0.2

0.9

Table 18.3: Life cycle inventory for 1000 kg chlorine

Sand, clay

Process and cooling water

Life cycle inventories: Overview of plastics (conclusion).

Main product: 1000 kg)	HIPS moulding	Expandable PS1	PVC powder	PVDC granules	PET granules : (amorphous)	
ir pollutants a salas a san	NAMES OF PERSONS ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSES	CALL COMPANY STATES	CHARLES COLUMN	TANGELS WE	A MARINE LA PORT	AT WATER STREET
Oust/particulates 9	2'000.	2'000.	3'900.	10'000.	3'500.	3'800.
Benzene (C eH e) 9	5.9	4.2	2	4.1	3.4	3.7
AH policyd, arom. HC 9	3,	4	0.02	0.041	0.015	0.017
romatic HC g	200.	220.	7.3	15.	8.2	9.
falon H1301 9	0.13	0.09	0.037	0.073	0.07	0.076
falogenated HC 9	0.00013	- 0.000098	0.00036	0.00079	0.00021	0.00024
Methane (CH ₄) 9	11'000.	11'000.	5700	10'000.	3700.	3'700.
VMVOC non-methane HC g	3'800.	4700	14'300.	23'000.	35'300.	36'300.
Carbon dioxide fossil (CO ₂)* 9	2'800'000.	2'400'000.	1'940'000.	3'350'000.	2'200'000.	2'300'000.
Carbon monoxide (CO) g	1'200.	960.	2'700.	8'600.	18'000	18'000.
Ammonia (NH 3) 9	0,53	0.39	1.5	3.2	0.82	0.94
lydrofluoric acid (HF) 9	3.3	2.5	8.8	19.	5.1	5.8
Vitrous oxide (N 2 O) 9	5.7	4.3	6.8	14.	5.3	. 5.9
lydrochloric acid (HCI) 9	35.	. 25.	230.	430.	100.	110.
Sulphur oxides (SO _x) as SO ₂ 9	12'000.	. 11'000.	13'000.	49'000.	22'000.	25'000.
Nitrogen oxides (NO _x) as NO ₂ g	12'000.	12'000.	16'000.	33'000.	19'000.	20'000.
.ead (Pb) .9	0.075	0.055	0.12	0.26	0.081	0.091
Cadmium (Cd) 9	0.02	0.014	0.014	0.03	0.015	0.016
Manganese (Mn) 9	0.017	0.013	0.05	0.11	0.027	0.031
Vickel (Ni) 9	1	0.75	0.85	1.8	0.81	0.9
Mercury (Hg) 9	0.024	0.022	0.034	0.061	0.028	0.03
Zinc (Zn) 9	0.52	0.37	0.27	0.55	0.34	0.37
Metals 9	10.	66.	3.	10.	10.	10.
Radioactive substances kBq	440'000.	330'000.	1'500'000.	3'600'000.	140'000.	160'000.
Aldehydes (R-CHO) 9	4.0			8'500.	9'300.	9'400.
Other organic compounds 9	The second	1 .	2.	6500.	9 300.	9400.
Chlorine 9 Chlorinated HC 9	E M. Vin		720.	25.		
	1	4 104	120.	25.		
Hydrogen sulphide (H ₂ S) 9 Hydrogen (H ₂) 9	. 10.			N 100 N		100

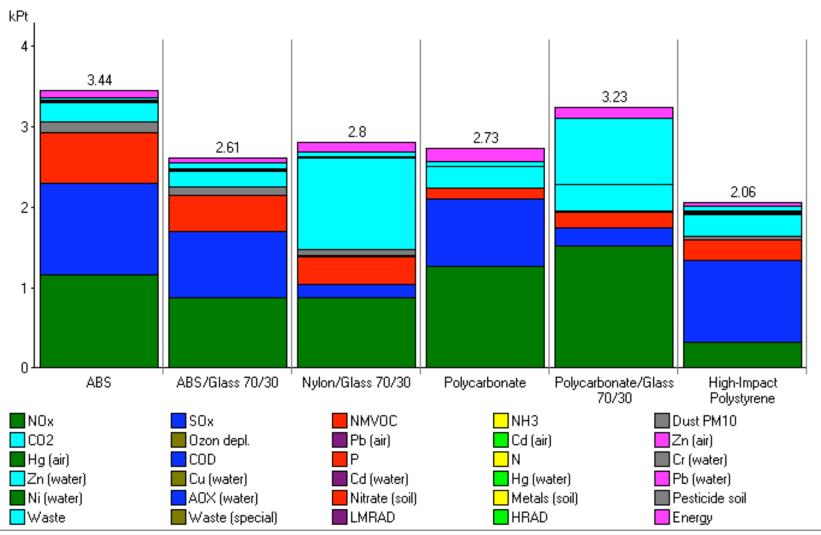
Water pollutants	CHARLES OF MANAGES	经济发展的	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		以外的教育的外部的	10000 TUTTO TO TO
Waste water quantity m3	14.15					
BOD 9	45.	150.	80. ;	70.	-1'000.	1'000.
COD g	360.	710.	1'100.	3'000.	3'100.	3'300.
AOX as CI	0.1	0.074	0.03	0.058	0.057	0.062
Suspended solids 9	340.	690.	2'400.	63'000.	550.	610.
Phenols 9	6.	5.	1.1	8.	2.	2.2
Toluene (C 7 H a) 9	3.2	2.3	1.	1.9	1.8	1.9
PAH policycl, arom, HC 9	0.34	0.25	0.1	0.2	0.19	0.21
Aromatic HC 9	23.	17.	7.3	. 14.	13.	14.
Chlorinated HC 9	0.029	0.022	10.	0.023	0.019	0.02
Fats/oils 9	70.	61.	50.	50.	20.	20.
DOC . g	37.	50.	1'000.	3'000.	13'000.	13'000.
TOC	120.	94.	480.	230.	390.	400.
Ammonium (NH4*)	8.	14.	17.	34.	32.	35.
Nitrate (NO ₃)	2.	2.	, 10.	21.	12.	14.
Nitrogen org. bound	9.6	6.9	2.4	4.6	5.2	5.6
Nitrogen total	8	4.	- 3.	3.	30.	1.
Arsenic (As)		0.13	1.3	2.4	0.33	0.29
Chloride (Cl ⁻)	4700.	3'500.	40'000.	454'000.	710.	710.
Cyanide (CN·)	0.11	0.076	0.04	0.079	0.062	0.067 .
Phosphate (PO ₄ ³)	4.9	3.6	38.	71.	9.6	6.7
Sulphate (SO ₄ 2-)	160.	120.	4'300.	18'000.	1'800.	1'800.
Sulphide (S2-)	<1	<1	0.25	0.49	0.47	0.5
Inorg, salts and acids	200.	150.	610.	1'220.	2'260.	2*280.
Aluminium (Al)	79.	58.	640.	1'200.	160.	140.
Barium (Ba)	72.	52.	70.	130,	50.	51.
Lead (Pb)	0.51	- 0.37,	3.4	6.5	0.94	0.86
Cadmium (Cd)	0.033 :	0.024	0.042	0.079	0.025	0.025
Chromium (Cr)	1.	0.77	6.5	12.	1.7	1.6
Iron (Fe)	110.	82.	420.	840.	180.	190.
Copper (Cu)	0.44	0.32	3.2	5.9	0.82	0.72
Nickel (Ni)	0.47	0.34	3.2	6.	0.84	0.74
Mercury (Hg)	0.0015	0.0014	0.0017	0.0029	0.0016	0.0016
Zinc (Zn)	1.	0.75	6.5	12.	1.7	1.5
Metals	430.	330.	200.	140.	110.	120.
Radioactive substances kB	4'100.	3'000.	14'000.	33'000.	1'300.	1'500.
Other organic compounds Calcium ions (Ca ²⁺)				200'000.		
Sodium ions (Na*)	600.	610.	2'300.	3'200.	4.5	

^{**}Bishbush of browning the most sead or ESU (cf. chapter 11.1)

**Distribution between fuel and feedstock: correction of APME (cf. chapter 11.1);

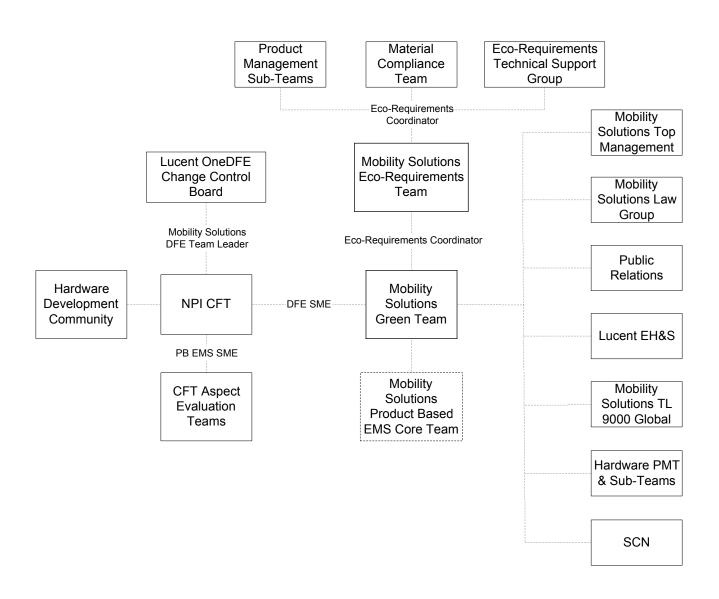
Emissions of biogenic CO₂ are not indicated (cf. chap. 8.1.1)

The Process Assessment Matrix


Process Analysis (Life Stages)	Non Hazardous Material Choices	Hazardous Materials Choices	Energy	Solid Residues	Liquid Residues	Gaseous Residues
A 1 4 2	1	2	3	4	5	6
	Inp	outs			Outputs	
E:			1.1			
Process infrastructure (facilities, equipment, maintenance)1	1.1	1.2	1.3	1.4	1.5	1.6
Manufacturing steps prior to process under analysis (PUA)	2.1	2.2	2.3	2.4	2.5	2.6
Process Under Analysis (PUA) Operation 3	3.1	3.2	3.3	3.4	3.5	3.6
Manufacturing steps following PUA 4	4.1	4.2	4.3	4.4	4.5	4.6
Process termination (Decommissio ning) 5	5.1	5.2	5.3	5.4	5.5	5.6
Life-cycle of products that pass through PUA 6	6.1	6.2	6.3	6.4	6.5	6.6

BOLLE SOLFURIC

The Process Assessment Matrix


Process Analysis (Life Stages)	Non Hazardous Material Choices	Hazardous Materials Choices	Energy	Solid Residues	Liquid Residues	Gaseous Residues
	I	uts	3	-	Outputs	6
			9			
Process infrastructure (facilities,	3.3	1.2	13	1.4	1.5 1.4	1.6 2.3
equipment, maintenance)1	レン	['' - ' (ニノ	0	(.7	.,,
Manufacturing steps prior to		2.2	23	2.4	2.5	2.6
process under analysis (PUA) 2	1.3	2.5	1.7	1.3	2.9	0.0
Process Under Analysis (PUA) Operation 3	0	3.2 	.9	3.4	1.7	3.6
Manufacturing steps following PUA 4		73.8	3.1	7.4	(3.9)	2.2
Process termination (Decommissioning) 5	5.1 /،O	0.8	5.5	5.4	1.7	5.6
Life-cycle of products that pass through PUA 6	0	1.1	2 (M)	6.4	6.5 2	6.6

Lifecycle Impact: Structural Plastics

Compare report setup 'Structural Plastics'; Method: Ecopoints 1997 (CH) / Ecopoints / indicator

Lucent Business Integration Structure

MOVING TOWARD SUSTAINABLE SOLUTIONS

Lower material intensity per unit of product or service

Lower levels of environmental toxicity and risk

POLLUTION CONTROL

PROCESS INTEGRATION

WHOLE FACILITY PLANNING

INDUSTRIAL ECOLOGY

SUSTAINABLE COMMUNITIES / CITIES / REGIONS

TIME

DFE & Sustainable Development

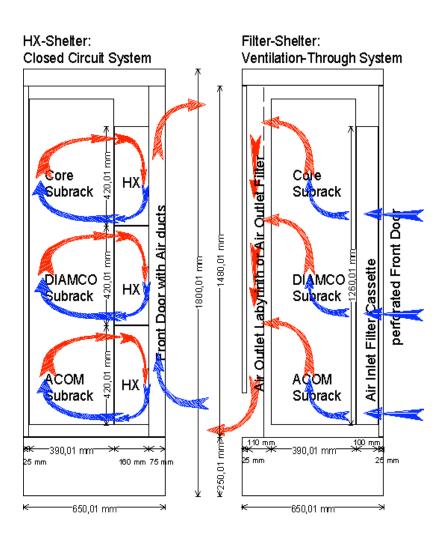
DFE seeks to:

- Reduce Environmental Impact
- Increase Resource Productivity
- Increase Eco-efficiency (i.e., drive toward sustainability)

"The two technologies with the biggest potential to make a significant contribution to sustainable development are expected to be energy generation from renewable sources and telecommunications" EURESCOM/ETNO

Siemens Base station BS 240 / 241

Winner in Category environmentally compatible products of


- Siemens Environmental Award 2000 -

6/15/05

Advanced Cooling by Membrane filter (Outdo (EU- Patent)

Saving Heatexchanger

- 7 K better heat balance
- MTBF improvement 31%
- Cost reduction 33%
- Weight reduction 50%
- Volume minus 38%
- Energy consumption minus 180 W

Critical Elements

- Life cycle thinking/systems perspective
- Balancing multiple impacts aspects and criteria
- Rooted in design development, engineering, and quality
- Integrated in the product design process
- Proactive and team approach

Typical Opportunities

- Reduced material intensity
- Reduced energy intensity
- Reduced toxic substances amts/dispersion
- Enhanced recyclability
- Extended product life
- Increased service intensity
- biomimicry

Critical Elements

- Values are important
- Transparency is important
- Needs to be actionable
- Proper education and introduction

DfE is helping make the connection between business and the environment

- Tools are available to build links between the right actors--purchasing, accounting, design
- Provides a meaningful environmental dialogue in an appropriate language
- A way of making long term thinking actionable
- Expands (redefines?) business sense of "community"

DfE Observations/Lessons Learned

- Don't create an unsolvable problem for a designer. It creates frustration
- We never seem to have the right data/information
- Decision makers seem more interested in information than tools
- Connection to business strategy is critical.
- Customers can drive this activity through quality programs

DfE Observations/Lessons Learned

- DfE capability exists in many multi-national companies but may not be used consistently
- Need more capacity to do these evaluations
- Mental maps need to be changed in the long run and DfE helps.
- There are very powerful reasons to connect to quality programs and "lean thinking."
- Education focusing on different levels of management is needed

DfE Observations/Lessons Learned

- Move from cutting costs to exploiting innovation
- The supply chains are growing very close to the OEM due to e-commerce, bringing environmental risk.
- It is challenging to mix various value systems, equity, society, global and inter-generational issues.
- The notion of a potentially abrupt environmental disaster is hard to communicate to business people